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The generation of sound by 
two-phase nozzle flows and its relevance to 

excess noise of jet engines 
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(Received 1 December 1975) 

This paper describes a prototype model experiment designed to test the principle 
that the ‘excess’ noise of a jet issuing from a conical nozzle can be significantly 
diminished by reducing the maximum pressure gradient in the flow. The experi- 
ment uses a water jet containing flow inhomogeneities in the form of air or helium 
bubbles exhausting through a conventional conical nozzle or a specially con- 
toured ‘ bellmouth ’ nozzle. It is argued that the level of the internally generated 
noise is controlled by the mean-flow pressure gradient, and substantial reductions 
in the sound level are recorded with the bellmouth nozzle. Certain features of the 
acoustic pressure signatures of the two-phase flow are examined in detail, in 
particular a rather surprising absolute difference in the sound pressure levels 
produced when helium rather than air bubbles are used under otherwise identical 
mean-flow conditions. Theoretical arguments are advanced which appear to 
explain the principal features of the observations. 

1. Introduction 
The ‘excess’ noise generated by sources located within a gas turbine engine is 

thought to constitute a significant portion of the total sound output at low jet 
Mach numbers. It appears to be intimately related to the combustion processes, 
the expansion of gases during exothermic reaction in the combustion chamber 
together with any unsteady fuel addition resulting in pressure fluctuations that 
eventually propagate from the jet nozzle as sound. Also, since the reaction 
depends on the turbulent mixing of fuel and air, pressure fluctuations can arise 
in the downstream flow because of the unsteady convection of inhomogeneities 
in entropy and vorticity. 

The importance of combustion-associated noise sources is supported by the 
recent work reported by Hoch & Hawkins (1973) and Whitfield (1975) on the 
Rolls Royce Olympus engine. Candel (1972)’ Cumpsty & Marble (1974) and 
Pickett (1974) have examined analytically the particular case of the noise 
generated when inhomogeneities, modelled by a train of harmonic entropy and 
vorticity waves, convect through regions of rapidly varying mean flow such as 
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a turbine row. There appears to be no experimental evidence which indicates the 
importance of this noise generation mechanism compared with that associated 
with the combustion processper se. However, numerical computations undertaken 
by Cumpsty (1974) suggest that observed temperature fluctuations of about 2 % 
(Dils 1973) are sufficient to account for the excess noise of several commercial jet 
engines. 

Ffowcs Williams & Howe (1975) extended the analysis to the case of the noise 
generated by the low Mach number convection of an entropy ‘slug’ completely 
filling a compact section of a nozzle. Howe (1975) has also examined the sound 
generated when entropy ‘spots ’ and compact turbulent eddies are convected 
past an obstacle in the flow and through a duct contraction. In  all cases the 
possibility of significant acoustic radiation was shown to depend on the presence 
of a strong mean-flow pressure gradient, a result also obtained by Morfey (1973) 
in the case of non-uniform free jet flows. This appears to imply that the importance 
of such noise sources could possibly be significantly diminished by making the 
maximum pressure gradient of the mean nozzle flow as small as practicable. 
A conical nozzle has its steepest pressure gradient at  the exit. This can be sub- 
stantially reduced by accelerating the flow uniformly throughout the length of 
the nozzle by means of an appropriately contoured nozzle wall. 

In  this paper we describe and attempt to explain a prototype experiment. 
A low velocity water jet is used, the inhomogeneities being bubbles of gas (air or 
helium), which generate sound in the pressure gradient of the nozzle flow. Two 
nozzle configurations are employed. The first is a conical nozzle, in which 
the pressure gradient has a large maximum at the exit, the second is a specially 
contoured, or ‘bellmouth’, nozzle of the same area contraction and length, 
in which the calculated mean-flow pressure gradient is constant and relatively 
small. 

The results reveal that under nominally identical flow conditions the bellmouth 
nozzle provides a reduction in the sound pressure level typically of order 10-20 dB. 
Of course the very large compressibility of the bubbles compared with that of the 
water flow means that the experiments do not furnish a faithful simulation of an 
inhomogeneous air jet. Indeed an examination of the acoustic wave profiles sug- 
gests that the actual sounding mechanism is associated with the excitation of 
resonant pulsations of gas bubbles. Although this is different in detail from the 
dipole type of source mechanism which is thought to be important in inhomo- 
geneous, hot subsonic jets (Morfey 1973), we shall argue below ($4) that the 
intensity of the radiated sound is still determined principally by the magnitude 
of the pressure gradient. 

There are several interesting features of the experimental results which are 
peculiar to the two-phase nozzle flow. In  the case of the conical nozzle the sound 
pressure level varies approximately as the third power of the mean-flow velocity; 
for the bellmouth nozzle the exponent was reduced to about 1.5. More surprising, 
however, was the fact that, although the reduction in sound pressure obtained 
with the bellmouth nozzle was about the same for both of the gases used, there was 
a difference of between 5 and 10 dB in the absolute sound pressure levels produced 
by the two gases under nominally identical flow conditions in the same nozzle. 
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The magnitude of this difference is too large to be explained by the relatively 
small difference in the compressibilities of helium and air. 

The experimental details and results are described in $5 2 and 3. In  5 4 simple 
theoretical models are discussed in order to explain the principal features of the 
observations. 

2. Experimental details 
A schematic representation of the experimental arrangements is shown in 

figure 1. Each of the water jets was produced by discharging the domestic water 
suppIy from a 13 mm diameter clear plastic pipe through a 4.75 mm diameter 
nozzle with an area contraction ratio of 7.2. The water flow was throttled and the 
delivery pressure measured upstream of the point where gas was injected into 
the flow. Gas was injected at a steady rate over the full range of operating 
pressures. Downstream the pipe divided into two identical branches supplying 
the two different nozzles with identical flow mixtures. Details of the nozzles are 
shown in the inset of figure 1. The fist was a straight-walled conical nozzle, while 
the second, which will be referred to as the ‘bellmouth’ nozzle, was profiled to 
produce a uniform flow acceleration. The maximum pressure gradient within the 
conical nozzle was estimated from the design to exceed that in the bellmouth 
nozzle by a factor of 6.6 under identical upstream conditions and for an ideal 
incompressible fluid. Throughout the experiment the volume flow ratio of gas to 
water at the point of injection was held at  a constant value of 0.1. 

The jet could be operated satisfactorily over the range of nozzle pressure ratios 
1-25-3.0. The corresponding jet velocities were determined in the absence of gas 
injection from the measured discharge from the nozzle, and were in the range 
7-22 m s-l. The jet velocity in the presence of bubbles could not be measured in 
a straightforward manner, but would generally be expected to exceed that of 
gas-free flow a t  the same pressure ratio because of the reduced effective mass 
density caused by the expansion of the bubbles in the nozzle. An estimate of the 
velocity can be made if it is assumed that the slip velocity of the bubbles through 
the water is small. Under these conditions Tangren, Dodge & Seifert (1949) have 
obtained a modified Bernoulli integral to the one-dimensional equations of two- 
phase flow, which is discussed in the review article of Wijngaarden (1972, 
equation (5.4)). This equation has been applied in the present case, and it was 
found that the difference between the velocity obaerved in the absence of gas 
injection and that calculated in this way was lew than S%,  the maximum 
discrepancy occurring at the lowest pressure ratio. 

The experiments were conducted in the open air in order that the jet might be 
discharged onto a soft surface, so reducing the background noise and the 
possibility of sound reflexion. The noise was measured by means of a &in. 
Bruel & Kjaer microphone positioned at 90’ to the jet axis at a distance of 
100 nozzle exit diameters. A typical sample illustrating the form of the measured 
far-field pressure is shown in figure 2. The noise was dominated by sporodic 
events in the form of oscillatory pulses, presumably caused by bubbles convecting 
through the nozzle. These pulses were separated by a random time interval of 
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FIGURE 2. Illustrating the sporadic nature of the dominant acoustio events and their 
magnitude relative to  background noise. Each division corresponds to a time interval of 
0.1 ms. 

2-10ms, which was generally large compared with the duration of a pulse 
(0.5-1.0ms). The intermittent nature of these events indicated that it would be 
sensible to analyse the data with conditional sampling. 

If it  is the case that each pressure pulse is associated with the passage of a 
bubble into the nozzle, the observed oscillatory character suggests that the 
dominant sound was generated by volume pulsations of the bubbles. Thus it was 
important to ensure that the decaying oscillatory tail of a recorded pressure 
signature was indeed a feature of the acoustic signal rather than a reflexion of the 
response characteristics of the data processing apparatus. The frequencies of the 
oscillations were in the range 5-10 kHz. No distortion of the signal was expected 
to be produced by the &in. Bruel & Kjaer microphone, which had a response 
uniform to & 2 dB over the range 6-20 000 Hz. Experimental measurements 
reported recently by Ffowcs Williams, Simson & Virchis (1975), however, have 
emphasized that it is important to ensure that the electronic recording equip- 
ment is accurately calibrated when transient events are to be analysed. In  the 
present experiments the pressure fluctuations were recorded on a NAGRA IV J 
A.M. tape recorder, which is specified by the manufacturers to have a uniform 
response to within & 0.3 dB over the range 2.5 Hz-35 H z .  I n  order to eliminate 
entirely the possibility of distortion of the signal arising because of a poor low 
frequency response (which would manifest itself in the form of an oscillatory 
response to an ideal step wave input) some of the measurements were repeated 
using a RACAL Store-4 F.M. tape recorder, which has a flat response from 
20 kHz down to d.c. It was not possible to detect any difference in the nature of 
the pressure signatures obtained in this way, and it was concluded that no 
significant distortion was introduced by the recording system. 
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Standard deviation 

FIGURE 3. Examples of the measured acoustic amplitude probability density functions for 
a pressure ratio of 3.04 and air injection. The horizontal scale is the amplitude normalized 
to  the standard deviation. (a)  Conical nozzle. (b)  Bellmouth nozzle. 

3. Experimental results 
The sound pressure level of the sporadic events was determined as follows. 

A pulse was recognized when the unsteady pressure exceeded a certain pre- 
determined level. A suitable sampling time period was chosen to include a portion 
of the signal both before and after the point of recognition. Any continuing 
oscillations exceeding a specified amplitude or gradient were also included. 
A common threshold amplitude was chosen for all experiments. The measured 
amplitude probability density functions are illustrated for a pressure ratio of 
3.04 in figure 3, and were sufficiently similar under all test conditions that the 
threshold amplitude could be based on a given probability of occurrence; 5 % 
was the figure chosen. Examples of the conditionally sampled far-field pressure 
wave forms obtained in this manner are shown in figures 4 and 5. The sound 
pressure level was deduced from an analysis of a continuous string of these 
separate events, the data being averaged over more than 20 separate signatures. 

The variation of the sound pressure level has been plotted in figure 6 against the 
pressure drop across the nozzle normalized by the atmospheric pressure, i.e. 
against (pressure ratio - I), for both nozzles. This mode of presentation of the 
data, rather than one in which the sound pressure level is plotted against the jet 
velocity- the usual practice in aerodynamic noise studies - was adopted because 
of the uncertainty noted in the previous section as to the variation of the two- 
phase jet velocity with the pressure ratio. In  the case of the conical nozzle with 
helium injection the sound pressure level was proportional to the normalized 
pressure drop to the power 1.7. The data points for air injection into the conical- 



Generation of sound by two-phase nozzle jlows 

n 

559 

I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  I 

0.5 1.0 1.5 2.0 2.5 3.0 

Time (ms) 

FIGURE 4. Examples of conditionally sampled acoustic wave forms for the conical nozzle. 
(a) Air injection, pressure ratio = 1-68. ( b )  Helium injection, pressure ratio = 1.68. (c) Air 
injection, pressure ratio = 3.04. (d) Helium injection, pressure ratio = 3.04. 
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FIGURE 6. Examples of conditionally sampled acoustic wave forms for 
the bellmouth nozzle. (a)-(d) as in figure 4. 
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FIUURE 6. The sound pressure level measured at 90' to the jet at  a distance of 100 nozzle exit 
diameters plotted against the pressure drop across the nozzle normalized by the atmospheric 
pressure. 

nozzle flow did not collapse onto a straight line. The experimental point at  the 
lowest pressure ratio in this case was initially thought to be in error, but the 
measurement was repeated on separate occasions with no detectable difference 
in the results. The sizes of the bubbles entering the nozzle a t  the lower pressure 
ratios were characteristically much larger than those a t  the higher pressure ratios 
(cf. the photographs, figures 7 and 8, plates i and 2) and this could well imply an 

36 F L M  75 
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FIGURE 9. (a) The difference AdB between the sound pressure levels due to helium and air 
injection. (b)  Attenuation AdB produced by the bellmouth nozzle. The 16.4dB line is the 
approximation to the attenuation predicted by means of a comparison of the maximum 
mean-flow pressure gradients in the absence of gas injection. 

essential difference between the mechanics of the nozzle flows at  the lower and 
higher jet velocities. 

The results shown in figure 6 for the bellmouth nozzle indicate that for both 
helium and air injection the sound pressure level was proportional to the nor- 
malized pressure drop to a power between 0.7 and 0.9. It is also apparent from the 
figure that for both nozzles there is a relatively large difference in the sound levels 
resulting from helium and air injection under otherwise norminally identical flow 
conditions. The helium bubbles were subjectively much noisier, and the measured 
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FIGURE 10. Examples of the measured power spectral density of the continuous (i.e. without 
conditional sampling) acoustic signal. Only the variation of each spectrum is shown; no 
absolute comparison can be made. (a) Conical nozzle, pressure ratio = 3-04, helium. 
(b)  Conical nozzle, pressure ratio = 1.68, helium. (c) Bellmouth nozzle, pressure ratio = 1.68, 
helium. (d) Conical nozzle, pressure ratio = 3.04, air. (e )  Bellmouth nozzle, pressure ratio 
= 3.04, air. 

differences for the two nozzles are shown in figure 9 (a).  Comparison of the 
sound levels of the two nozzles for the same gas injection shows that the bell- 
mouth nozzle produced a 15-30 dB attenuation for identical upstream flow 
conditions. The detailed comparison is shown in figure 9 ( b ) .  

The character of the conditionally sampled wave forms illustrated in figures 4 
and 5 is the same for both nozzles, which suggests that the noise generation 
mechanism is the same in both cases. The pressure first exhibits a transient rise 
(positive or negative) presumably associated with the passage of a bubble 
through the increasing pressure gradient of the nozzle. The time scale of this 
transient was extracted from a detailed examination of a large number of 
signatures. If it is tentatively assumed that the jet velocity is not significantly 
Werent from that measured in the absence of gas injection, and the possible 
limitations of this assumption have already been mentioned in the previous 
section, it is found that the time scale is inversely proportional to the jet velocity, 
the proportionality constant being a length equal to 3-5 yo of the nozzle con- 
traction length in all cases. 

Following the initial pressure rise there generally occurred a large amplitude 
decaying oscillation whose duration was typically 0.5 ms, the characteristic 
period of the oscillation being about 0.1 ms. For pressure ratios greater than 1.7 
the frequency of the oscillation appeared to attain an essentially constant value 

36-2 
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of about lOkHz, independent both of the nozzle used and the gas injected. An 
examination of a large number of the sampled wave profiles also indicated the 
presence of a smaller characteristic frequency of about 5 kHz when the bellmouth 
nozzle was operated a t  the lower pressure ratios (cf. figures 4 and 5 ) .  The photo- 
graphs of the bubble distribution upstream of the nozzle (figure 7)  show that a t  
a pressure ratio of 1-68 the two-phase flow consisted of a distribution of large and 
small bubbles. It is likely that the different observed acoustic frequencies are 
associated with the range of bubble sizes. The bubbles must disintegrate in the 
nozzle to form smaller bubbles if the observed frequencies are to correspond to 
their resonant pulsations (see $4) .  At the highest pressure ratio which was 
examined (3*04), the photographs in figure 8 reveal that the bubbles were smaller, 
typically 1.5-2 mm in diameter, and the two-phase flow more homogeneous. 
These views are supported to some extent by a spectral analysis of the continuous 
acoustic signal (figure lo), rather than the conditionally sampled signal. The 
random occurrence of the oscillatory pulses and the decay of the individual 
oscillations produced a broad spectrum. However the spectral peak is indicative 
of the predominant period of oscillation, and occurs a t  about 9.6 kHz a t  the 
higher pressure ratios, a shift to lower frequencies being perceptible for the 
bellmouth nozzle as the pressure ratio is reduced. 

4. Discussion of results 
4.1. Attenuation produced by the bellmouth nozzle 

It was noted in the introduction that model-problem calculations indicate that 
the amplitude of internally generated sound is linearly proportional to the 
maximum mean-flow pressure gradient. The design characteristics of the nozzles 
can therefore be used to obtain a f i s t  estimate of the attenuation produced by 
the bellmouth nozzle. For irrotational incompressible flow the calculated maxi- 
mum pressure gradient within the conical nozzle exceeded that in the bellmouth 
nozzle by a factor of 6-6. It follows from this that the attenuation produced by 
the bellmouth nozzle should be of order 2010g1,(6.6) 21 16.4dB. Of course the 
ratio of the mean pressure gradients in the presence of two-phase flows must 
differ from the above value, but an approximate analysis of the type mentioned 
in 5 2 indicates that the effect is to reduce the above prediction only by about 1 dB 
and 2.5 dB a t  respectively the lowest and highest pressure ratios examined. 

These estimates of the attenuation are in reasonabIe order-of-magnitude 
agreement with the observed levels of figure 9 (b)  for pressure ratios greater than 
about 1-7. The characteristic frequency of the sporadic, oscillatory acoustic pulses 
tended to be much lower for the bellmouth than for the conical nozzle at  the lower 
pressure ratios. This may account for the large discrepancy between figure 9 ( b )  
and the predicted attenuation at the lower pressure ratios, since a proper 
theoretical comparison of the nozzles should also take account of the unknown 
frequency dependence of the sound levels. 
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4.2. Sound generation mechanisms 

In this subsection we shall derive expressions which enable us to estimate that 
a bubble pulsating resonantly a t  a frequency of 5-10kHz must have a radius of 
about 0-35-0.7 mm. This is rather smaller than the typical size of a bubble shown 
entering a nozzle in the photographs in figures 7 and 8. These bubbles might well 
disintegrate as they enter the nozzle flow, a feature made probable by their 
relatively high Weber number, which is characteristic of a structurally unstable 
bubble (Wallis 1969, p. 247). Thus we are led to postulate that a resonant bubble 
pulsation can be induced following: (a )  the impulsive disintegration of a large 
bubble; ( b )  the formation of the smaller bubbles which subsequently convect 
through the relatively large pressure gradient at  the nozzle exit. 

We shall examine a simplified model of case ( b )  first. Consider a spherical 
bubble whose radius is much smaller than the length characterizing the variations 
in the mean flow and which is convected along the axis of the nozzle. The bubble 
will remain spherical if it is sufficiently small and we shall assume further that 
the ambient flow in the neighbourhood of the bubble may be assumed to be 
potential. Thus effects associated with the presence of a turbulent wake are 
specifically excluded. 

Take the x axis along the axis of the nozzle, and let xo ( t )  denote the position of 
the centre of the bubble at  time t ,  and V = dxo/dt the bubble velocity. In  a first 
approximation the perturbation pressure within the bubble is given by 

p = PO ( t )  -PI (dV/dt) r cos 6, (4.1) 

where p1 is the density of the gas and ( r ,  6) are spherical polar co-ordinates with 
origin a t  the instantaneous location of the centre of the bubble, 0 being measured 
fkom the direction of motion. The first term on the right of (4.1) accounts for 
uniform pressure fluctuations arising from changes in the bubble volume; the 
second term is associated with the small pressure gradient required to produce 
a uniform acceleration d V/dt of the gas within the bubble. 

Let v denote the spherically symmetric pulsation velocity of the bubble surface. 
This can be related to the component po ( t )  of the pressure by making use of the 
continuity equation, which we write in the form 

Here v and S denote respectively the gas velocity and specific entropy, and c1 is 
the sound speed in the gas and cp the specific heat at constant pressure. The term 
on the right of (4.2) is absent when dissipation within the bubble is neglected. 
However, this term must be retained if it  is desired to account quantitatively for 
the observed decay of the acoustic wave profiles. Devin (1959) and Chapman & 
Plesset (1  970) have examined the relative contributions of viscosity, heat con- 
duction and acoustic radiation to the damping of resonant pulsations of a bubble, 
and concluded that for the frequencies important in the present context the most 
important energy loss mechanism is thermal conduction. In  the case of a con- 
vected bubble there is also likely to be additional dissipation arising from a 
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fluctuating viscous drag, analogous to that examined by Batchelor (1969). 
However experiments by Macpherson (1957) and Silberman (1957) on the pro- 
pagation of sound through a bubbly medium in which the bubble size was con- 
trolled with great accuracy indicated that the principal dissipation mechanism 
was still that of thermal conduction within the bubble. 

Integrate (4.2) over the volume of the bubble to obtain 

1 Dsd3x. --+-=- -- 
p1c2, Dt a 4nn2 cp Dt 

1 Dpo 3v 
(4.3) 

In  writing down this result we have linearized conditions about a mean bubble 
size, which is assumed for the purposes of the present calculation to be constant, 
the mean radius being denoted by a. The integral on the right-hand side may be 
determined from the linearized energy equation 

I D S  x 
= - V2T, -- 

cp Dt To (4.4) 

where To and T denote respectiveIy the mean-flow temperature (assumed 
constant) and the fluctuation temperature of the gas in the bubble; x denotes the 
thermometric conductivity of the gas. Integrating (4.4) over the bubble and 
making use of the divergence theorem then permits one to write (4.3) in the form 

where only the spherically symmetric component of the temperature fluctuation 
contributes to the right-hand side. This contribution may be calculated as 
follows. 

Assuming ideal-gas behaviour and a harmonic time dependence exp ( - iwt), 
the spherically symmetric temperature fluctuation satisfies (4.4) expressed in 
the form 

Note that in (4.6) the variation with r of the spherically symmetric pressure 
component resulting from the effect of heat conduction has been ignored. A more 
detailed analysis reveals that such variations are confined to a thin boundary 
layer of width N (,/w)a a t  the interior surface of the bubble and have a relative 
magnitude of order t iq/c2,  which is very small for the values of the radian frequency 
w of interest. Equation (4.6) is easily solved by noting that to a very good approxi- 
mation the relatively large heat capacity of water implies that the temperature 
fluctuation at  the surface of the bubble is negligibly small. Thus we find that 

where 
If I? is defined by 
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then the substitution of (4.7) into (4.5) leads to the following relation between 
harmonic variations of p ,  and the bubble pulsation velocity v:  

(4.10) 

where y is the ratio of the specific heats of the gas. This result shows that v has 
a component dependent on the thermal characteristics of the gas which is in 
phase with the pressure p,, indicating that the bubble behaves as a net sink of 
mechanical energy. 

When the bubble convects in the nozzle the mean-flow pressure gradient 
causes the bubble to accelerate relative to the water and to change in volume. 
In order to examine these effects we suppose that the ambient flow in the 
immediate neighbourhood of the bubble may be regarded as incompressible, 
a condition which requires the wavelength of the radiated sound to be much 
larger than the bubble radius. In the absence of the bubble the flow is specified 
by a steady velocity potential #,(x), say. Let U = (a#o/ax)zo, the mean- 
flow velocity evaluated at the location of the centre xo( t )  of the bubble, and 
U' = (a2#o/ax2)zo. Then it is easily verified that close to the bubble the potential 
may be expanded in the form 

where the terms omitted are negligible provided that changes in the mean flow 
are small over a distance of the order of the bubble radius. 

Variations in the mean bubble radius produce second-order effects in the 
perturbation terms of (4.1 1) and are neglected. Thus in the linear approximation 
it is readily deduced from Bernoulli's theorem that the variable part of the 
ambient pressure on the surface of the bubble is given by 

where (ap/ax)xo = -po UU' is the mean-flow pressure gradient evaluated a t  xo( t ) ,  
p, being the density of water, or more generally of an ambient two-phase flow. 

For bubble radii greater than about 0*02mm, surface tension makes an 
insignificant contribution to the gas pressure and corresponding terms in ( 4 . 1 )  
and (4 .12)  may be equated to give 

po ( t )  - up, dv/dt = - &p0{U2 + +( u - V)", 

(2Pl +PO)dV/dt = - 3(aP/a4z0 .  

(4 .13 )  

(4.14) 

The second of these equations describes the motion of the bubble along the 
axis of the nozzle. Since p1 p, (4.14) expresses the well-known result that the 
acceleration experienced by the bubble is three times that of the ambient fluid it 
displaces (Batchelor 1967, p. 455). 

Since the pulsation velocity v is related to p ,  by (4.10) for harmonic variations, 
it follows that (4 .13 )  determines the dependence of the mean bubble pressure p ,  
on the variations in the ambient dynamic pressure - &po [Uz  + &( U - V ) 2 ] .  This 
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pressure is a function of the position of the bubble, i.e. of time, so that it may be 
regarded as a Fourier composition of harmonic components 9 e-iot, say. For each 
such component (4.13) and (4.10) canbecombined to yield asingleequationforpo: 

(4.15) 

where wo is the adiabatic resonance frequency of the bubble, defined by 

w; = 3p,c:/poa2. (4.16) 

The zero of the term in curly brackets on the left of (4.15), regarded as a, 
function of w ,  defines the actual resonance frequency of the bubble pulsations. 
When heat conduction is ignored, so that the bubble behaves adiabatically, 
w = wo, a result first obtained by Minnaert (1933). The importance of heat 
conduction is determined by the dimensionless parameter 

aa = a(iw/x)&, (4.17) 

which is the ratio of the mean bubble radius to the thermal length scale ( x / w ) t .  
The observed values of the characteristic frequencies (5-1 0 kHz) and the above 

results may be used to confirm that in the present case ua is expected to be large, 
and that the radian frequency a t  resonance of the bubble pulsation is given 
approximately by 

w = wo(l-i6), (4.18) 

where (4.19) 

The coefficient 6 determines the decay of the oscillation, and is such that the 
wave amplitude is diminished by a factor of l/e over a period of time equivalent to 
1/(2n8) oscillations. Note that (4.18) and (4.19)includenoeffect of the nozzle walls 
nor of the free jet surface. This is consistent with the assumption that the bubble 
radius is small compared with the nozzle length scale, but it may also be noted 
that Strasberg (1953) has shown that surface effects modify the above conclusion 
by more than about 10 % only when the bubble is located closer than a bubble 
diameter to the surface. 

Since dissipation is important only near to resonance we may now approximate 
the second term in the curly brackets of (4.15) by evaluating I’ at w = wo. It then 
follows that the real-time equation governing the variations in the mean bubble 
pressure po is approximately 

(4.20) 

This result shows that resonant pulsations can be excited in the bubble 
provided that the variations in the dynamic pressure on the right of (4.20) have 
a significant spectral component in the neighbourhood of wo. Strasberg (1 956) and 
Hall (1969) have considered analogous models of bubble excitation in a non- 
uniform mean flow, but took no account of dissipation, nor of the dynamic 
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pressure variations arising from the slip velocity V - U of the bubble. Actually 
a resonant response is most likely to be initiated as the bubble leaves the nozzle, 
where the pressure gradient of the mean flow is greatest. In  this case simple order- 
of-magnitude estimates using (4.14) indicate that a corresponding impulsive 
variation in the slip velocity results in an impulsive change in the dynamic 
pressure experienced by the bubble which is always less than about 25 yo of that 
arising from the variation in the mean-flow conditions. It follows, from expres- 
sions to be obtained below, that the additional contribution to the acoustic field 
from the slip-velocity term in (4.20) amounts to about 2dB. 

The formula (4.19) for the decay coefficient may be applied to  the experimental 
pressure profiles. At a temperature of 300 O K  the thermometric conductivities 
of air and helium are respectively 0-22 and 1.77cm2 s-l at  a pressure of one 
atmosphere. Thus at a frequency of 10 kHz, which is characteristic of the acoustic 
profiles illustrated in figure 4 for the conical nozzle, it  follows from (4.16) and 
(4.19) that the corresponding bubble radius is about 0.3mm and that the wave 
amplitude diminishes by a factor of 1/e after about six or seven oscillations in the 
case of an air bubble and after about 14-2 oscillations for a helium bubble. These 
predictions are consistent with many of the observed profiles. The decay of the 
helium oscillations a t  this frequency is certainly much more rapid than that of 
an air bubble. The agreement is particularly good for the air-bubble profiles shown 
in figure 4. This may therefore be regarded as lending support to our approxima- 
tion, in which only the effects of heat conduction contribute significantly to the 
dissipation. 

Return now to the question of the excitation of the bubble resonances. In  the 
model problem leading to  (4.20) it is clear that a resonance will be excited a t  a 
frequency of 5-10 kHz only if the dynamic pressure varies rapidly along the 
trajectory of the bubble. This occurs where the pressure gradient is large, i.e. 
at  the nozzle exit. Before we examine the consequences of this we shall consider - 
briefly the possibility (a )  above, of the excitation of a 
disintegration. 

The tendency of a bubble to break up is governed by 
Weber number 

resonance by bubble 

the magnitude of the 

(4.21) 

(see, for example, Wallis 1969, p. 247), where X is the surface tension. Little 
authoritative work seems to have been done in this field, but it appears that a 
bubble is likely to remain intact for We of the order of 10 or less (Hinze 1955). 
The Weber numbers of t.he bubbles shown in t7he photographs (figures 7 and 8) 
are typically very much greater than this, for example We N 15-110 for a bubble 
of radius 1 mm and a slip velocity equal to 10 % of the jet velocity. 

The excitation of resonances by the disintegration of a bubble was first 
examined by Strasberg (1956). Strasberg pointed out that when a bubble splits 
into two smaller bubbles at  constant pressure there is a difference between the 
equilibrium pressures of the larger and the smaller bubbles which arises because 
of the increased surface-tension pressure on the smaller bubbles. This is equi- 
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valent to the application of an impulsive pressure, which appears as a forcing 
term on the right-hand side of the response equation (4.20), the magnitude of the 
pressure being of order 2Z/a. When a bubble breaks up in a nozzle flow, in the 
presence of a relatively large pressure gradient, resonant pulsations are excited 
by a second mechanism, which has not apparently been considered hitherto. In 
this case the parent bubble is stretched in the direction of the ambient pressure 
gradient. The actual pressure within the bubble is effectively uniform, so that if, 
for example, the bubble necks and snaps into two near its centre of elongation, 
resonant pulsations can be induced in the two smaller bubbles by an effective 
surface pressure analogous to Strasberg's surface-tension pressure and of 
magnitude - a(ap/ax),, where a is the bubble radius and (ap/ax), the mean-flow 
pressure gradient. In  order to compare the relative efficiencies of these two 
mechanisms, consider a bubble of radius a 21 0.3 mm and approximate the value 
of the largest pressure gradient by a pressure drop of one atmosphere over a 
distance estimated in Q 3 to be of the order of 5 yo of the nozzle contraction length 
shown in figure 1, i.e. of 4.52 em. The corresponding resonant acoustic response of 
a bubble is proportional to the impulsive pressure [cf. (4.22) below], and it follows 
that the ratio of the sound intensity produced by the impulsive pressure-gradient 
force to that arising from surface-tension effects is of order 25 dB. 

4.3. The intensity of the radiated sound 

The sound generated by a pulsating bubble is ideally represented by a monopole 
acoustic source. However, when the changes in the volume of the bubble are 
produced by the mean flow, it is necessary to recall that even in the absence of 
pulsational oscillation of the bubble there is a change in the mean density of the 
two-phase flow resulting from the variation in the mean pressure as the fluid 
flows down the pressure gradient of the nozzle. Thus the strength of the monopole 
source must involve a factor dependent on the difference between the com- 
pressibility l/plc: of the gas in the bubble and that of the ambient two-phase 
flow. Let c,, denote the sound speed in the bubbly medium. Ffowcs Williams & 
Howe (1975) have shown that, when the effect of convection on the radiated 
sound is ignored, the acoustic pressure fluctuations within the flow at a distance 
R from the bubble are given by 

(4.22) 

where A = +a3 is the volume of the bubble and the term in square brackets is 
evaluated at the retarded time t - R/c,. Results analogous to (4.22) have been 
obtained in a similar context by Strasberg (1956) and Crighton & Ffowcs 
Williams (1969), although no account was taken of the relative compressibilities 
of the bubble and the mean flow, the first term in the curly brackets being 
neglected. That term is not always small, however, since the speed of sound co 
can attain values considerably smaller than c1 or the sound speed in pure water 
for quite moderate bubble concentrations (Wijngaarden 1972). 

Two further remarks are necessary to justify the use of (4.22) in the present 
case. First, the experimental observations were made at  an angle of 90" to the jet 
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axis, so that modifications to the solution due to effects of Doppler amplification 
(Lighthill 1952) are not present. It is possible, however, that a large slip velocity 
V -  U of the bubble could destroy the simple monopole picture of the source in 
the manner described very recently by Dowling (1976), but for the small bubbles 
which are likely to be the important sound sources P - U is probably quite small, 
and in any case the additional contribution from this term apparently has the 
undesirable effect of raising the exponent of the parametric dependence of the 
sound on the normalized pressure drop across the nozzle. Second (4.22) 
represents the field of a spherical wave radiating into the two-phase flow, no 
account having been taken of the boundaries of the jet flow nor of the nozzle 
geometry. This is expected to be an adequate approximation, since the very 
small sound speed ( -  35 m s-1, according to formulae given by Wijngaarden 
1972) within the jet indicates that the relevant acoustic wavelengths are rather 
small. Further, since acoustic waves decay rapidly in a bubbly medium 
(Wijngaarden 1972) multiple reflexions are likely to be unimportant, and the 
formula for the free-space radiation is obtained by multiplying the result (4.22) 
by an appropriate transmission coefficient, viz. 

~PsCs/(Ps~s + P O C O )  21 2(Pscs/Poco)~ 

where ps  and c, are respectively the free-space density and sound speed. 
Thus a t  a distance R from the nozzle and a t  90" to the jet axis the free-space 

acoustic radiation resulting from bubble pulsations a t  the resonant frequency wo 
of (4.16) is given by 

(4.23) 

where p s  is the atmospheric pressure and ys the ratio of the specific heats of air. 
It is clear that, since p1c2, is practically the same whether the bubbles are of 
helium or air, (4.23) contains no terms which can account for the observed 
5-10dB difference between the sound pressure levels of helium and air bubbles 
shown in figure 9 (a) .  This question is examined further below. 

The retarded value of the pulsational pressure p o  appearing on the right of 
(4.23) may be determined from (4.20). The effect of the dynamic pressure on the 
right of (4.20) is obtained by assuming that it changes very rapidly at  the nozzle 
exit. The precise rate of change (i.e. the pressure gradient) depends on the nozzle 
geometry, but in a first approximation it may be supposed to change dis- 
continuously by an amount dependent on the pressure ratio of the jet. If p J  
denotes the pressure upstream of the nozzle, it  follows from (4.20) that the 
fluctuating component of p o  is given by 

Po ( t )  = (13.7 -PSI exp ( - w o w  cos wo t (4.24) 

for t > 0,  where it is also assumed that the bubble convects through the nozzle 
exit at  time t = 0. Thus the sound pressure level varies as the square of the 
normalized pressure drop, which is somewhat larger than the observed depen- 
dence (figure 6) for the conical nozzle, and much larger than that observed for 
the bellmouth nozzle. 
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Using these results we can obtain a quantitative estimate of the sound pressure 
level produced at a distance of 100 nozzle diameters by a single bubble resonating 
at  a frequency of IOkHz. At a pressure ratio of 1.68 (4.23) and (4.24) predict an 
acoustic intensity of about 94dB, this figure rising to 104dB at the highest 
pressure ratio 3-04. These are in order-of-magnitude agreement with the results 
of figure 6. 

When a bubble resonance is initiated by the breakup of a larger bubble in the 
manner already described, a similar analysis shows that the sound pressure level 
is again proportional to the square of the normalized pressure drop. 

One possibility not yet examined is that the two-phase flow in the neighbour- 
hood of the nozzle exit may well lead to a local overexpansion of the mixture (cf. 
Wijngaarden 1972), so that a bubble finds itself momentarily in a region of 
reduced pressure. If r denotes the duration of this overexpansion for a particular 
bubble, then r LIU, where L is a length dependent on the nozzle geometry. If 
this length characterizes the initial rise of the observed pressure profiles then, 
with the reservations already discussed in 9 3, it is of the order of about 3-5 % of 
the nozzle length. Let P N po  U 2  denote the magnitude of the pressure fluctuation 
accompanying the overexpansion. The corresponding resonant response of the 
bubble may be estimated by inserting a forcing term of theformug T P & ( ~ )  intothe 
right of (4.20), and this leads to a free-space acoustic pressure p given by 

(4.26) 

the terms in the square brackets being evaluated at  the retarded time t - RIGs. 
It has already been noted in $ 3  that the resonance frequency uo apparently 

changed very little for pressure ratios greater than about 1.7. If this is indeed the 
case i t  follows from (4.25) that, since r N LIU,  the sound pressure level is directly 
proportional to the normalized pressure drop (i.0. to po U 2 )  at the larger pressure 
ratios. It is difficult to give a reliable quantitative estimate of the sound pressure 
level because of the uncertainty in the values of the quantities involved, how- 
ever if P is about I0 yo ofthe atmospheric pressureps and U - 15 m s-l, the level 
predicted by (4.25) a t  100nozzle diametersis about 97 dB, for a bubble resonating 
a t  a frequency of 10 kHz. Again this result is in reasonable agreement with the 
observations, and the predicted dependence on the pressure drop across the 
nozzle indicates that this mechanism may well be important in the bellmouth 
nozzle. 

4.4. Difference between the radiation from helium and air bubbles 

None of the mechanisms examined above is capable of explaining the 5-10dB 
difference in the sound pressure levels observed (figure 9a)  for helium and air 
bubbles under nominally identical flow conditions. We shall now propose an 
explanation which depends on the anomalous absorption of sound which can 
occur in a bubbly medium. To do this we shall assume that the disintegration of 
a large bubble in the pressure gradient of the nozzle produces a fairly homo- 
geneous bubbly medium in which the characteristic bubble size is compatible 
with the observed oscillatory frequencies of the acoustic pulses. Thus a resonating 
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bubble actually radiates into a medium consisting essentially of an assembly of 
harmonic oscillators. When the acoustic frequency is close to one of the charac- 
teristic frequencies of these oscillators the wave is rapidly absorbed. 

The question of sound propagation in a bubbly two-phase flow has been 
extensively studied (e.g. Carstensen & Foldy 1947; Meyer & Skudrzyk 1953; 
Wijngaarden 1972; Batchelor 1969), although it appears that the only loss 
mechanism explicitly included in these earlier investigations was that associated 
with viscous stresses. Actually all theories describe only the propagation of the 
coherent component of the acoustic field, where the relevant perturbation 
pressure p and velocity 7 are defined by an average over a region of space small 
compared with the wavelength yet containing many bubbles. Provided the 
wavelength is sufficiently large the effect of incoherent scattering is expected to 
be small compared with that resulting from the averaged dynamic response of 
the bubbles. 

If a denotes the proportion by volume of bubbles present, then in a frame 
moving with the mean jet velocity the averaged momentum equation is 

(4.26) 

where p is the density of water, so that po = (1 -a)p.  In  writing down the 
averaged equation of continuity account must be taken of a random distribution 
of sources and sinks formed by the bubbles. If v, denotes the radial velocity at  
the surface of a bubble of mean radius a,, the appropriate continuity equation is 

(4.27) 

where c is the sound speed in water and a, is the volume density of bubbles of 
radius a,. 

The locally averaged perturbation pressure pn within a bubble of radius a, is 
related to t, and I ,  by 

p ,  = pa, aii,/at + ?j (4.28) 

if the effects of surface tension are negligible. For harmonic time dependence 
exp(-iwt), ?j, and En are also related by an equation analogous to (4.10), 
and when this is used in conjunction with (4.26)-(4.28), it  may be shown that 
1, satisfies1a wave equation of the form 

vzp + k2p = 0, (4.29) 

where the complex wavenumber k is defined by 

in which I?, is given by (4.9) with a = a, and w, is the adiabatic resonant 
frequency of a bubble of radius a,. 

Equation (4.30) is the dispersion relation governing the propagation of a plane 
wave of the form ei(kz-wt). When the bubbles all have the game radius, the 
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imaginary part of k determined by (4.30) is small except when the frequency o of 
the sound wave is close to the resonance frequency of the bubbles, where it rises 
to a very sharp peak, corresponding to rapid attenuation of the wave. The 
magnitude of the peak is determined by the value of the thermometric con- 
ductivity. Of course, even in the case of a fairly moderate distribution of bubble 
sizes the summation in (4.30) tends to  reduce considerably the size of the peak 
and extend it over a much wider range of frequencies. This probably accounts 
for the apparent discrepancy between the simple theory and the observed 
attenuation curves reported by Fox, Curley & Larson (1955). It is difficult to 
assess the importance of this broadening, but if it  can be assumed that the 
distribution of bubble sizes is not too extensive, which is perhaps reasonable at  
the higher pressure ratios in view of the fairly constant observed resonance 
frequencies, it seems reasonable to suppose that the ratio of the peak attenuation 
coefficients for propagation through helium bubbles and air bubbles is still 
governed by the values of the corresponding conductivities. 

In  this case it is a relatively simple matter to deduce from (4.30) that near 
resonance 

kz ((7 - 1) 4x1-4 (4.31) 

where kz is the imaginary part of k, the constant of proportionality being depen- 
dent on the frequency and bubble volume density. This implies that the attenua- 
tion distance of a wave is proportional to ( (y-  1) J x } ~ .  Actually it should be 
mentioned that in all of these considerations we have ignored the attenuation 
which occurs because of incoherent scattering by the bubbles. But such scattering 
serves only to redirect the sound and does not represent a net loss of acoustic 
energy. 

To interpret this result we now suppose that, when a large bubble disintegrates 
in the nozzle flow, only the resulting smaller bubbles located within a distance 
from the free surface of the jet proportional to ( (y  - I)  J X } ~  can effectively radiate 
into free space. Other things being equal this implies that the sound pressure 
level of the helium bubbles will exceed that of the air bubbles by 

This is a remarkable prediction since it agrees very well with the observed 
relative levels (cf. figure 9a). In  view of the approximations involved the agree- 
ment is perhaps fortuitous, nevertheless the implication is certainly that 
thermodynamic dissipation processes associated with the internal dynamics of 
the bubble response are indeed responsible for the observed differences. 

5. Conclusion 
The results of the experiment described in this paper lend strong support to the 

principle that a considerable reduction in the level of internally generated sound 
can be achieved by reducing as much as practicable the maximum pressure 
gradient in the nozzle. It appears that similar benefits should also be possible in 
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hot subsonic air jets, in which it is thought that the magnitude of the pressure 
gradient also controls the level of the excess noise. In this case, however, the 
acceleration of the flow in the turbine blade rows is probably more important 
than that in the nozzle, and it is hard to envisage how the local pressure gradient 
in the blade passages can be significantly modified, except perhaps by radical 
design changes such as increasing the chord or the number of turbine stages. The 
most efficient way to reduce the pressure gradient in the nozzle would be to 
modify the wall profile in the manner of the ‘bellmouth’ nozzle, and this could 
quite easily be incorporated into the design of a propulsion unit. 

This paper documents a study undertaken as part of the Rolls-Royce (1971) 
Ltd programme of research into high speed jet noise. 
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FIGURE 7. Photographs of two-phase flow entering the nozzles. 
Nozzle pressure ratio = 1.68. 

(Pueing p .  576) 
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Air injection 

Air injection 

Helium in-iection 

Helium injection 

FIGURE 8. Photographs o f  two-phase flow entcring tho rioesles. 
Pu’ozzle pressure ratio = 3.04. 
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